Skip to main content
Log in

Phosphatidylethanolamine deficiency in membrane lipids inhibits keratinocyte intercellular networks formation

  • Cell Growth/Differentiation/Apoptosis
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

Ethanolamine (Etn) is required for the growth of epitehlial cells in culture. Without Etn, the amount of phosphatidyl-ethanolamine (PE) in membrane lipids is reduced, and cell proliferation stops. When the membrane lipids are deficient of PE, some extracellular signaling processes become impaired. In this study, we examined the effect of Etn deprivation on the formation of intercellular networks in immortalized human oral keratinocytes. Keratinocytes proliferate with undifferentiated morphologies in a low-calcium medium, whereas they undergo differentiation to form intercellular networks in a high-calcium medium. The cells were first cultured with or without Etn supplement in a low-calcium (0.07 mM) medium, and then the calcium concentration was raised to 1.8 mM. The localization and organization of the following proteins were examined: (1) desmogleins and plakoglobin in desmosomes, (2) E-cadherin and β-catenin in adherens junctions and (3) actin and keratin filaments in cytoskeletons. As expected, in the Etn-supplemented cells, the elevated level of calcium induced the junctional localization of the proteins associated with desmosomes and adherens junctions and also induced the formation of keratin and actin networks. On the contrary, in the Etn-deprived cells, the elevated level of calcium induced none of the above processes. The results suggest that having a sufficient amount of PE or proper phospholipid composition in the membranes is crucial for differentiation in epithelial cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Babcock, M. S.; Marino, M. R.; Gunning III, W. T.; Stoner, G. D. Clonal growth and serial propagation of rat esophageal epithelial cells. In Vitro 19:403–415; 1983.

    Article  PubMed  CAS  Google Scholar 

  • Emoto, K.; Umeda, M. An essential role for a membrane lipid in cytokinesis: regulation of contractile ring disassembly by redistribution of phosphatidylethanolamine. J. Cell Biol. 149:1215–1224; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Errick, J. E.; Kano-Sueoka, T. Growth responsiveness to prolactin and its loss in normal rat mammary cells in culture. Mol. Cell. Endocrinol. 32:255–270; 1983.

    Article  PubMed  CAS  Google Scholar 

  • Fisk, H. A.; Kano-Sueoka, T. Effect of membrane phosphatidylethanolamine-deficiency/phosphatidylcholine-excess on the metabolism of phosphatidylcholine and phosphatidylethanolamine. J. Cell. Physiol. 153:589–595; 1992.

    Article  PubMed  CAS  Google Scholar 

  • Garrod, D.; Chidgey, M.; North, A. Desmosomes: differentiation, development, dynamics and disease. Curr. Opin. Cell Biol. 8:670–678; 1996.

    Article  PubMed  CAS  Google Scholar 

  • Gumbiner, B. M. Cell adhesion: the molecular basis of tissue architecture and morphogenesis. Cell 84:345–357; 1996.

    Article  PubMed  CAS  Google Scholar 

  • Hammond, S. L.; Ham, R. G.; Stampfer, M. R. Serum-free growth of human mammary epithelial cells: rapid clonal growth in defined medium and extended serial passage with pituitary extract. Proc. Natl. Acad. Sci. USA 81:5435–5439; 1984.

    Article  PubMed  CAS  Google Scholar 

  • Kandikonda, S.; Oda, D.; Niederman, R., et al. Cadherin-mediated adhesion is required for normal growth regulation of human gingival epithelial cells. Cell Adhes. Commun. 4:13–24; 1996.

    PubMed  CAS  Google Scholar 

  • Kano-Sueoka, T.; Cohen, D. M.; Yamaizumi, Z., et al. Phosphoethanolamine as a growth factor of a mammary carcinoma cell line of rat. Proc. Natl. Acad. Sci. USA 76:5741–5744; 1979.

    Article  PubMed  CAS  Google Scholar 

  • Kano-Sueoka, T.; Errick, J. E. Effects of phosphoethanolamine and ethanolamine on growth of mammary carcinoma cells in culture. Exp. Cell Res. 136:137–145; 1981.

    Article  PubMed  CAS  Google Scholar 

  • Kano-Sueoka, T.; Errick, J. E.; King, D., et al. Phosphatidylethanolamine synthesis in ethanolamine-responsive and-nonresponsive cells in culture. J. Cell. Physiol. 117:109–115; 1983.

    Article  PubMed  CAS  Google Scholar 

  • Kano-Sueoka, T.; King, D. M. Phosphatidylethanolamine biosynthesis in rat mammary carcinoma cells that require and do not require ethanolamine for proliferation. J. Biol. Chem. 262:607–6081; 1987.

    Google Scholar 

  • Kano-Sueoka, T.; King, D. M. Effects of phosphatidylethanolamine and phosphatidylcholine in membrane phospholipid on binding of phorbol ester in rat mammary carcinoma cells. Cancer Res. 48:1528–1532; 1988.

    PubMed  CAS  Google Scholar 

  • Kano-Sueoka, T.; King, D. M.; Fisk, H. A., et al. Binding of epidermal growth factor to its receptor is affected by membrane phospholipid environment. J. Cell. Physiol. 145:543–548; 1990.

    Article  PubMed  CAS  Google Scholar 

  • Kano-Sueoka, T.; Nicks, M. E. Abnormal function of protein kinase C in cells having phosphatidylethanolamine-deficient and phosphatidylcholine-excess membranes. Cell Growth Differ. 4:533–537; 1993.

    PubMed  CAS  Google Scholar 

  • Kowalczyk, A. P.; Bornslaeger, E. A.; Norvell, S. M., et al. Desmosomes: intercellular adhesive junctions specialized for attachment of intermediate filaments. Int. Rev. Cytol. 185:237–302; 1999

    Article  PubMed  CAS  Google Scholar 

  • Lechner, J. F.; haugen, A.; McClendon, I. A., et al Clonal growth of normal adult human bronchial epithelial cells in a serum-free medium. In Vitro 18:633–642; 1982.

    PubMed  CAS  Google Scholar 

  • nelson, C.; Moffat, B.; Jacobsen, N., et al. Glycerophosphorylethanolamine (GPEA) identified as an hepatocyte growth stimulator in liver extracts. Exp. Cell Res. 229:20–26; 1996.

    Article  PubMed  CAS  Google Scholar 

  • Oda, D.; Bigler, L.; Lee, P., et al. HPV immortalization of human oral epithelial cells: a model for carcinogenesis. Exp. Cell Res. 226:164–169; 1996.

    Article  PubMed  CAS  Google Scholar 

  • Oda, D.; Watson, E. Human oral epithelial cell culture I. Improved conditions for reproducible culture in serum-free medium. In Vitro Cell. Dev. Biol. 26:589–595; 1990.

    Article  PubMed  CAS  Google Scholar 

  • Peehl, D. M.; Stamey, T. A. Serum-free growth of adult human prostatic epithelial cells. In Vitro Cell. Dev. Biol. 22:82–90; 1986.

    Article  PubMed  CAS  Google Scholar 

  • Sasaki, H.; Kume, H.; Nemoto, A., et al. Ethanolamine modulates the rate of rat hepatocyte proliferation in vitro and in vivo. Proc. Natl. Acad. Sci. USA 94:7320–7325; 1997.

    Article  PubMed  CAS  Google Scholar 

  • Sun, T-T.; Green, H. Keratin filaments of cultured human epidermal cells. J. Biol. Chem. 253:2053–2060; 1978.

    PubMed  CAS  Google Scholar 

  • Tsao, M. C.; Walthal, B. J.; Ham, R. G. Clonal growth of normal human epidermal keratinocytes in a defined medium. J. Cell. Physiol. 110:219–229; 1982.

    Article  PubMed  CAS  Google Scholar 

  • Vasioukhin, V.; Bauer, C.; Yin, M., et al. Directed actin polymerization is the force for epithelial cell-cell adhesion. Cell 100:209–219; 2000.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamiko Kano-Sueoka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kano-Sueoka, T., Oda, D. & Kawamoto, J.K. Phosphatidylethanolamine deficiency in membrane lipids inhibits keratinocyte intercellular networks formation. In Vitro Cell.Dev.Biol.-Animal 37, 691–697 (2001). https://doi.org/10.1290/1071-2690(2001)037<0691:PDIMLI>2.0.CO;2

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1290/1071-2690(2001)037<0691:PDIMLI>2.0.CO;2

Key words

Navigation